400 research outputs found

    Experimental Induction of a Perceived “Telescoped” Limb Using a Full-Body Illusion

    Get PDF
    Phantom limbs refer to the sensation that an amputated or missing limb is still attached to the body. Phantom limbs may be perceived as continuous with the stump so as to resemble a normal limb, or as “telescoped” with the more distal portion of the phantom being perceived as having withdrawn within the stump. Telescoping tends to be related to increased levels of phantom pain, making it a clinically relevant phenomenon to investigate. In the current study we show that a full-body illusion can be used to induce the sensation of a telescoped limb in healthy individuals. For the induction of the full-body illusion, participants saw the body of a mannequin from a first person perspective while being subjected to synchronized visuo-tactile stimulation through stroking. Crucially, the mannequin was missing its left hand so as to resemble an amputee. By manipulating the positioning of the strokes applied to the mannequin's stump with respect to the participants’ hand we were able to evoke the sensation of the participants’ hand being located either below the stump or, more crucially, “inside” the stump, i.e., telescoped. In three separate experiments these effects were supported by complementary subjective data from questionnaires, verbally reported perceived location of the hand, and manual pointing movements indicating hand position (proprioceptive drift). Taken together our results show that healthy individuals can experience the body of an upper limb amputee as their own, and that this can be associated with telescoping sensations. This is a theoretically important observation as it shows that ownership of an entire body can be evoked in the context of gross anatomical incongruence for a single limb, and that telescoping sensations occur as a consequence of the body representation system trying to reduce this incongruence. Furthermore, the present study might provide a new platform for future studies of the relationship between telescoping and phantom pain in amputees

    Moving a Rubber Hand that Feels Like Your Own: A Dissociation of Ownership and Agency

    Get PDF
    During voluntary hand movement, we sense that we generate the movement and that the hand is a part of our body. These feelings of control over bodily actions, or the sense of agency, and the ownership of body parts are two fundamental aspects of the way we consciously experience our bodies. However, little is known about how these processes are functionally linked. Here, we introduce a version of the rubber hand illusion in which participants control the movements of the index finger of a model hand, which is in full view, by moving their own right index finger. We demonstrated that voluntary finger movements elicit a robust illusion of owning the rubber hand and that the senses of ownership and agency over the model hand can be dissociated. We systematically varied the relative timing of the finger movements (synchronous versus asynchronous), the mode of movement (active versus passive), and the position of the model hand (anatomically congruent versus incongruent positions). Importantly, asynchrony eliminated both ownership and agency, passive movements abolished the sense of agency but left ownership intact, and incongruent positioning of the model hand diminished ownership but did not eliminate agency. These findings provide evidence for a double dissociation of ownership and agency, suggesting that they represent distinct cognitive processes. Interestingly, we also noted that the sense of agency was stronger when the hand was perceived to be a part of the body, and only in this condition did we observe a significant correlation between the subjects’ ratings of agency and ownership. We discuss this in the context of possible differences between agency over owned body parts and agency over actions that involve interactions with external objects. In summary, the results obtained in this study using a simple moving rubber hand illusion paradigm extend previous findings on the experience of ownership and agency and shed new light on their relationship

    Visuo-thermal congruency modulates the sense of body ownership

    Get PDF
    Thermosensation has been redefined as an interoceptive modality that provides information about the homeostatic state of the body. However, the contribution of thermosensory signals to the sense of body ownership remains unclear. Across two rubber hand illusion (RHI) experiments (N = 73), we manipulated the visuo-thermal congruency between the felt and seen temperature, on the real and rubber hand respectively. We measured the subjectively experienced RHI, the perceived hand location and temperature of touch, and monitored skin temperature. We found that visuo-thermal incongruencies between the seen and felt touch reduced the subjective and behavioural RHI experience (Experiment 1). Visuo-thermal incongruencies also gave rise to a visuo-thermal illusion effect, but only when the rubber hand was placed in a plausible position (Experiment 2) and when considering individual differences in interoceptive sensibility. Thus, thermosensation contributes to the sense of body ownership by a mechanism of dynamic integration of visual and thermosensory signals.Göran Gustafsson FoundationSwedish Research CouncilEuropean Research Council under the European Union’s horizon 2020 research and innovation programme (SELF-UNITY)Marie SkƂodowska-Curie Intra-European Individual Fellowship (HOMEOTHERMIC SELF)Accepte

    The role of the skin in interoception : a neglected organ?

    Get PDF
    In the past two decades, interoception has received increasing attention in the fields of psychology and cognitive science, as well as neuroscience and physiology. A plethora of studies adopted the perception of cardiac signals as a proxy for interoception. However, recent findings have cast doubt to the methodological and intrinsic validity of the tasks used thus far. Therefore, there is an ongoing effort to improve the existing cardiac interoceptive tasks and to identify novel channels to target the perception of the physiological state of the body. Amid such scientific abundancy, one could question whether the field has been partially neglecting one of our widest organs in terms of dimensions and functions, the skin. According to some views grounded on anatomical and physiological evidence, skin-mediated signals such as affective touch, pain, and temperature have been re-defined as interoceptive. Nevertheless, there is no agreement at this regard. Here, we discuss some of the anatomical, physiological, and experimental arguments supporting the scientific study of interoception by means of skin-mediated signals. We argue that more attention should be paid to the skin as a sensory organ that monitors the bodily physiological state, and further propose thermosensation as a particularly attractive model of skin-mediated interoception.European Research Council under the European Union’s horizon 2020 research and innovation programme (SELF-UNITY)Marie SkƂodowska-Curie Intra-European Individual Fellowship (HOMEOTHERMIC SELF)Accepte

    Mental Imagery Induces Cross-Modal Sensory Plasticity and Changes Future Auditory Perception

    Get PDF
    Can what we imagine in our minds change how we perceive the world in the future? A continuous process of multisensory integration and recalibration is responsible for maintaining a correspondence between the senses (e.g., vision, touch, audition) and, ultimately, a stable and coherent perception of our environment. This process depends on the plasticity of our sensory systems. The so-called ventriloquism aftereffect—a shift in the perceived localization of sounds presented alone after repeated exposure to spatially mismatched auditory and visual stimuli—is a clear example of this type of plasticity in the audiovisual domain. In a series of six studies with 24 participants each, we investigated an imagery-induced ventriloquism aftereffect in which imagining a visual stimulus elicits the same frequency-specific auditory aftereffect as actually seeing one. These results demonstrate that mental imagery can recalibrate the senses and induce the same cross-modal sensory plasticity as real sensory stimuli

    Weakening the subjective sensation of own hand ownership does not interfere with rapid finger movements

    Get PDF
    When we perform a movement we generally have a clear distinction between which parts of the world constitute our body and which parts do not. However, how the sense of ownership over our body supports movement is not yet fully understood. We aimed to see whether a sense of ownership over the hand supports the performance of rapid hand movements. In three experiments (n = 48, n = 30, n = 24), we presented participants with congruent and incongruent visuotactile and visuoproprioceptive information regarding their own hand. In keeping with previous experiments, multisensory disintegration resulted in a reduction in the subjective sensation of ownership over the hand, as reflected in questionnaire responses. Following sensory stimulation, participants were required to rapidly abduct their index finger whilst the movement was tracked. We examined the hypothesis that, should a sense of ownership over the limb be necessary for generating rapid movements with that limb, reaction time would increase when hand ownership was reduced, whilst the acceleration and velocity of the movement would decrease. We observed that reductions in own hand ownership did not interfere with rapid index finger abduction, suggesting that the motor system may not be reliant on a subjective sense of ownership over the body in order to generate movement

    Illusory obesity triggers body dissatisfaction responses in the insula and anterior cingulate cortex

    Get PDF
    In today’s Western society, concerns regarding body size and negative feelings towards one’s body are all too common. However, little is known about the neural mechanisms underlying negative feelings towards the body and how they relate to body perception and eating-disorder pathology. Here, we used multisensory illusions to elicit illusory ownership of obese and slim bodies during functional magnetic resonance imaging. The results implicate the anterior insula and the anterior cingulate cortex in the development of negative feelings towards the body through functional interactions with the posterior parietal cortex, which mediates perceived obesity. Moreover, cingulate neural responses were modulated by non-clinical eating-disorder psychopathology and were attenuated in females. These results reveal how perceptual and affective body representations interact in the human brain and may help explain the neurobiological underpinnings of eating-disorder vulnerability in women

    Limits of cross-modal plasticity? Short-term visual deprivation does not enhance cardiac interoception, thermosensation, or tactile spatial acuity

    Get PDF
    In the present study, we investigated the effect of short-term visual deprivation on discriminative touch, cardiac interoception, and thermosensation by asking 64 healthy volunteers to perform four behavioral tasks. The experimental group contained 32 subjects who were blindfolded and kept in complete darkness for 110 minutes, while the control group consisted of 32 volunteers who were not blindfolded but were otherwise kept under identical experimental conditions. Both groups performed the required tasks three times: before and directly after deprivation (or control) and after an additional washout period of 40 minutes, in which all participants were exposed to normal light conditions. Our results showed that short- term visual deprivation had no effect on any of the senses tested. This finding suggests that short-term visual deprivation does not modulate basic bodily senses and extends this principle beyond tactile processing to the interoceptive modalities of cardiac and thermal sensations.Swedish Research Council, 2017-03135Marie SkƂodowska-Curie Intra-European Individual Fellowship, 891175Accepte

    Neural correlates of the rubber hand illusion in amputees: a report of two cases

    Get PDF
    One of the current challenges in the field of advanced prosthetics is the development of artificial limbs that provide the user with detailed sensory feedback. Sensory feedback from our limbs is not only important for proprioceptive awareness and motor control, but also essential for providing us with a feeling of ownership or simply put, the sensation that our limbs actually belong to ourselves. The strong link between sensory feedback and ownership has been repeatedly demonstrated with the so-called rubber hand illusion (RHI), during which individuals are induced with the illusory sensation that an artificial hand is their own. In healthy participants, this occurs via integration of visual and tactile signals, which is primarily supported by multisensory regions in premotor and intraparietal cortices. Here, we describe a functional magnetic resonance imaging (fMRI) study with two upper limb amputees, showing for the first time that the same brain regions underlie ownership sensations of an artificial hand in this population. Albeit preliminary, these findings are interesting from both a theoretical as well as a clinical point of view. From a theoretical perspective, they imply that even years after the amputation, a few seconds of synchronous visuotactile stimulation are sufficient to activate hand-centered multisensory integration mechanisms. From a clinical perspective, they show that a very basic sensation of touch from an artificial hand can be obtained by simple but precisely targeted stimulation of the stump, and suggest that a similar mechanism implemented in prosthetic hands would greatly facilitate ownership sensations and in turn, acceptance of the prosthesis

    Interoception as independent cardiac, thermosensory, nociceptive, and affective touch perceptual submodalities

    Get PDF
    Interoception includes signals from inner organs and thin afferents in the skin, providing information about the body’s physiological state. However, the functional relationships between interoceptive submodalities are unclear, and thermosensation as skin-based interoception has rarely been considered. We used five tasks to examine the relationships among cardiac awareness, thermosensation, affective touch, and nociception. Thermosensation was probed with a classic temperature detection task and the new dynamic thermal matching task, where participants matched perceived moving thermal stimuli in a range of colder/warmer stimuli around thermoneutrality. We also examined differences between hairy and non-hairy skin and found superior perception of dynamic temperature and static cooling on hairy skin. Notably, no significant correlations were observed across interoceptive submodality accuracies (except for cold and pain perception in the palm), which indicates that interoception at perceptual levels should be conceptualised as a set of relatively independent processes and abilities rather than a single construct.Göran Gustafsson foundationSwedish Research CouncilEuropean Research Council under the European Union’s horizon 2020 research and innovation programme (SELF-UNITY)Marie SkƂodowska-Curie Intra-European Individual Fellowship (HOMEOTHERMIC SELF)Accepte
    • 

    corecore